Recitation 2. March 2

Focus: $L U$ and LDU factorizations, taking inverses, symmetric matrices, column spaces
The $L U$ factorization of a matrix A is the unique way of writing it:

$$
A=L U
$$

where L is a lower triangular matrix with 1 's on the diagonal and U is in row echelon form. If A is square, then U is also square, in which case "row echelon form" means the same thing as "upper triangular". You can also write:

$$
A=L D U
$$

where both L and U have 1's on the diagonal, and D is diagonal. The discussion above works for almost all matrices A, and for those where it doesn't work, you can always write:

$$
P A=L D U
$$

for a suitable permutation matrix P.
The inverse of a square matrix A is the unique square matrix A with the property that $A A^{-1}=A^{-1} A=I$. One way to compute the inverse is to do Gauss-Jordan elimination on the augmented matrix $[A \mid I]$.

A symmetric matrix is one which is equal to its own transpose, i.e. its reflection across the diagonal.

The column space of a matrix is the vector space spanned by its columns.

1. Compute the $P A=L D U$ factorization of the matrix:

$$
A=\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]
$$

Solution:

2. Compute the inverse of the matrix:

$$
A=\left[\begin{array}{ccc}
1 & 6 & -1 \\
3 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]
$$

by Gauss-Jordan elimination on the augmented matrix $[A \mid I]$.

Solution:

3. Show that for any matrix A, the square matrix $S=A^{T} A$ is symmetric. For any vector \boldsymbol{v}, show that:

$$
\boldsymbol{v}^{T} S \boldsymbol{v}
$$

is a (1×1 matrix whose only entry is a) non-negative number.

Solution:

4. Find numbers a, b such that the column space of the matrix:

$$
A=\left[\begin{array}{ll}
1 & a \\
b & 3 \\
2 & 1
\end{array}\right]
$$

is the plane in $x y z$ space determined by the equation $2 x+y-3 z=0$.

Solution:

